3 years ago

Toward defeating diffraction and randomness for laser beam propagation in turbulent atmosphere.

Natalia Vladimirova, Pavel M. Lushnikov

A large distance propagation in turbulent atmosphere results in disintegration of laser beam into speckles. We find that the most intense speckle approximately preserves both the Gaussian shape and the diameter of the initial collimated beam while loosing energy during propagation.

One per 1000 of atmospheric realizations produces at 7km distance an intense speckle above 20\% of the initial power. Such optimal realizations create effective extended lenses focusing the intense speckle beyond the diffraction limit of vacuum propagation.

Atmospheric realizations change every several milliseconds. We propose to use intense speckles to greatly increase the time-averaged power delivery to the target plane by triggering the pulsed laser operations only at times of optimal realizations. Resulting power delivery and laser irradiance at the intense speckles well exceeds both intensity of diffraction-limited beam and intensity averaged over typical realizations.

Publisher URL: http://arxiv.org/abs/1711.02841

DOI: arXiv:1711.02841v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.