5 years ago

Visible-Light-Promoted Selective Oxidation of Alcohols Using a Covalent Triazine Framework

Visible-Light-Promoted Selective Oxidation of Alcohols Using a Covalent Triazine Framework
Wei Huang, Lei Wang, Run Li, Kai A. I. Zhang, Hao Lu, Katharina Landfester, Beatriz Chiyin Ma
The formation of aldehydes and ketones via selective oxidation of alcohols is an essential transformation in organic synthesis. However, the usually harsh reaction conditions using toxic metal catalysts or corrosive reagents lead to undesired side products and wastes. Environmentally friendly and mild reaction conditions using metal-free catalysts remain a huge challenge. Herein, we report the use of a thiophene-based covalent triazine framework (CTF) as pure organic and visible-light-active photocatalyst for the selective oxidation of alcohols at room temperature. Molecular oxygen was activated as a clean and selective oxidant. The high selectivity and efficiency of the pure organic photocatalyst could be demonstrated and were comparable to those of the state-of-art metal or nonmetal catalytic systems reported.

Publisher URL: http://dx.doi.org/10.1021/acscatal.7b01719

DOI: 10.1021/acscatal.7b01719

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.