3 years ago

A Porous Array of Clock Qubits

A Porous Array of Clock Qubits
Joseph M. Zadrozny, T. David Harris, Audrey T. Gallagher, Danna E. Freedman
Realizing atomic-level spatial control over qubits, the fundamental units of both quantum information processing systems and quantum sensors, constitutes a crucial cross-field challenge. Toward this end, embedding electronic-spin-based qubits within the framework of a crystalline porous material is a promising approach to create precise arrays of qubits. Realizing porous hosts for qubits would also impact the emerging field of quantum sensing, whereby porosity would enable analytes to infuse into a sensor matrix. However, building viable qubits into a porous material is an appreciable challenge because of the extreme sensitivity of qubits to local magnetic noise. To insulate these frameworks from ambient magnetic signals, we borrowed from atomic physics the idea to exploit clock transitions at avoided level crossings. Here, sensitivity to magnetic noise is inherently limited by the flat slope of the so-called clock transition. More specifically, we created an array of clocklike qubits within a metal–organic framework by combining coordination chemistry considerations with the fundamental concept of atomic clock transitions. Electron paramagnetic resonance studies verify a clocklike transition for the hosted cobalt(II) spins in the framework [(TCPP)Co0.07Zn0.93]3[Zr6O4(OH)4(H2O)6]2, the first demonstration in any porous material. The clocklike qubits display lifetimes of up to 14 μs despite abundant local nuclear spins, illuminating a new path toward proof-of-concept quantum sensors and processors with high inherent structural precision.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b03123

DOI: 10.1021/jacs.7b03123

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.