3 years ago

Universality of critically pinned interfaces in 2-dimensional isotropic random media.

P. Grassberger

Based on extensive simulations, we conjecture that critically pinned interfaces in 2-dimensional isotropic random media with short range correlations are always in the universality class of ordinary percolation. Thus, in contrast to interfaces in %CONTENT%gt;2$ dimensions, there is no distinction between fractal (i.e., percolative) and rough but non-fractal interfaces. Our claim includes interfaces in zero-temperature random field Ising models (both with and without spontaneous nucleation), in heterogeneous bootstrap percolation, and in susceptible-weakened-infected-removed (SWIR) epidemics. It does not include models with long range correlations in the randomness, and models where overhangs are explicitly forbidden (which would imply non-isotropy of the medium).

Publisher URL: http://arxiv.org/abs/1711.02904

DOI: arXiv:1711.02904v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.