Zero-Crossing Statistics for Non-Markovian Time Series.
In applications spaning from image analysis and speech recognition, to energy dissipation in turbulence and time-to failure of fatigued materials, researchers and engineers want to calculate how often a stochastic observable crosses a specific level, such as zero. At first glance this problem looks simple, but it is in fact theoretically very challenging. And therefore, few exact results exist. One exception is the celebrated Rice formula that gives the mean number of zero-crossings in a fixed time interval of a zero-mean Gaussian stationary processes. In this study we use the so-called Independent Interval Approximation to go beyond Rice's result and derive analytic expressions for all higher-order zero-crossing cumulants and moments. Our results agrees well with simulations for the non-Markovian autoregressive model.
Publisher URL: http://arxiv.org/abs/1711.02926
DOI: arXiv:1711.02926v1
Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.