4 years ago

Single-Site Cobalt Catalysts at New Zr12(μ3-O)8(μ3-OH)8(μ2-OH)6 Metal–Organic Framework Nodes for Highly Active Hydrogenation of Nitroarenes, Nitriles, and Isocyanides

Single-Site Cobalt Catalysts at New Zr12(μ3-O)8(μ3-OH)8(μ2-OH)6 Metal–Organic Framework Nodes for Highly Active Hydrogenation of Nitroarenes, Nitriles, and Isocyanides
Zekai Lin, Ania Urban, Pengfei Ji, Kuntal Manna, Yang Song, Wenbin Lin, Xuanyu Feng
We report here the synthesis of a robust and porous metal–organic framework (MOF), Zr12-TPDC, constructed from triphenyldicarboxylic acid (H2TPDC) and an unprecedented Zr12 secondary building unit (SBU): Zr123-O)83-OH)82-OH)6. The Zr12-SBU can be viewed as an inorganic node dimerized from two commonly observed Zr6 clusters via six μ2-OH groups. The metalation of Zr12-TPDC SBUs with CoCl2 followed by treatment with NaBEt3H afforded a highly active and reusable solid Zr12-TPDC-Co catalyst for the hydrogenation of nitroarenes, nitriles, and isocyanides to corresponding amines with excellent activity and selectivity. This work highlights the opportunity in designing novel MOF-supported single-site solid catalysts by tuning the electronic and steric properties of the SBUs.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b02394

DOI: 10.1021/jacs.7b02394

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.