3 years ago

rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models

Shinichi Nakagawa, Martin A. Stoffel, Holger Schielzeth
Intra-class correlations (ICC) and repeatabilities (R) are fundamental statistics for quantifying the reproducibility of measurements and for understanding the structure of biological variation. Linear mixed effects models offer a versatile framework for estimating ICC and R. However, while point estimation and significance testing by likelihood ratio tests is straightforward, the quantification of uncertainty is not as easily achieved. A further complication arises when the analysis is conducted on data with non-Gaussian distributions because the separation of the mean and the variance is less clear-cut for non-Gaussian than for Gaussian models. Nonetheless, there are solutions to approximate repeatability for the most widely used families of generalized linear mixed models (GLMMs). Here, we introduce the R package rptR for the estimation of ICC and R for Gaussian, binomial and Poisson-distributed data. Uncertainty in estimators is quantified by parametric bootstrapping and significance testing is implemented by likelihood ratio tests and through permutation of residuals. The package allows control for fixed effects and thus the estimation of adjusted repeatabilities (that remove fixed effect variance from the estimate) and enhanced agreement repeatabilities (that add fixed effect variance to the denominator). Furthermore, repeatability can be estimated from random-slope models. The package features convenient summary and plotting functions. Besides repeatabilities, the package also allows the quantification of coefficients of determination R2 as well as of raw variance components. We present an example analysis to demonstrate the core features and discuss some of the limitations of rptR.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/2041-210X.12797

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.