3 years ago

Light-Regulated Synthesis of Cyclic-di-GMP by a Bidomain Construct of the Cyanobacteriochrome Tlr0924 (SesA) without Stable Dimerization

Light-Regulated Synthesis of Cyclic-di-GMP by a Bidomain Construct of the Cyanobacteriochrome Tlr0924 (SesA) without Stable Dimerization
Nathan C. Rockwell, Matthew Blain-Hartung, J. Clark Lagarias
Phytochromes and cyanobacteriochromes (CBCRs) use double-bond photoisomerization of their linear tetrapyrrole (bilin) chromophores within cGMP-specific phosphodiesterases/adenylyl cyclases/FhlA (GAF) domain-containing photosensory modules to regulate activity of C-terminal output domains. CBCRs exhibit photocycles that are much more diverse than those of phytochromes and are often found in large modular proteins such as Tlr0924 (SesA), one of three blue light regulators of cell aggregation in the cyanobacterium Thermosynechococcus elongatus. Tlr0924 contains a single bilin-binding GAF domain adjacent to a C-terminal diguanylate cyclase (GGDEF) domain whose catalytic activity requires formation of a dimeric transition state presumably supported by a multidomain extension at its N-terminus. To probe the structural basis of light-mediated signal propagation from the photosensory input domain to a signaling output domain for a representative CBCR, these studies explore the properties of a bidomain GAF–GGDEF construct of Tlr0924 (Tlr0924Δ) that retains light-regulated diguanylate cyclase activity. Surprisingly, circular dichroism spectroscopy and size exclusion chromatography data do not support formation of stable dimers in either the blue-absorbing 15ZPb dark state or the green-absorbing 15EPg photoproduct state of Tlr0924Δ. Analysis of variants containing site-specific mutations reveals that proper signal transmission requires both chromophorylation of the GAF domain and individual residues within the amphipathic linker region between GAF and GGDEF domains. On the basis of these data, we propose a model in which bilin binding and light signals are propagated from the GAF domain via the linker to alter the equilibrium and interconversion dynamics between active and inactive conformations of the GGDEF domain to favor or disfavor formation of catalytically competent dimers.

Publisher URL: http://dx.doi.org/10.1021/acs.biochem.7b00734

DOI: 10.1021/acs.biochem.7b00734

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.