3 years ago

Bioluminescent Probe for Tumor Hypoxia Detection via CYP450 Reductase in Living Animals

Bioluminescent Probe for Tumor Hypoxia Detection via CYP450 Reductase in Living Animals
Xiaofeng Yang, Yuxing Lin, Minyong Li, Hui Chen, Tingting Liu, Lupei Du, Chengsen Tian, Yuqi Gao
Hypoxia is a pathogenic characteristic of solid tumors owing to absent or abnormal vasculature in the tumor microenvironment and essential in tumor progression, angiogenesis, metastasis, invasion and resistance to immune system and therapy. In hypoxic environments, CYP450 enzymes are more efficient than in normoxia. Herein, based on the reductive capacity of CYP450 enzymes/NADPH system, we managed to cage aminoluciferin developing a reaction-based bioluminescent probe as well as an imaging method for the hypoxia detection. Exhibiting enhanced about 3-fold total flux in big (1.2 cm-diameter) tumors, Hypoxia BioLuminescent probe (HBL) can afford potential utility for in cellulo and in vivo hypoxia imaging in tumor model mice.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b03597

DOI: 10.1021/acs.analchem.7b03597

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.