3 years ago

Photoacoustic Imaging of Embryonic Stem Cell-Derived Cardiomyocytes in Living Hearts with Ultrasensitive Semiconducting Polymer Nanoparticles

Photoacoustic Imaging of Embryonic Stem Cell-Derived Cardiomyocytes in Living Hearts with Ultrasensitive Semiconducting Polymer Nanoparticles
Xin Zhao, Haodi Wu, Kai Li, Huiyuan Wang, Sarah C. Heilshorn, Huaxiao Yang, Evgenios Neofytou, Xulei Qin, Heike Daldrup-Link, Dan Ding, Joseph C. Wu, Haodong Chen, Tony Chour
Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) have become promising tools to repair injured hearts. To achieve optimal outcomes, advanced molecular imaging methods are essential to accurately track these transplanted cells in the heart. In this study, it is demonstrated for the first time that a class of photoacoustic nanoparticles (PANPs) incorporating semiconducting polymers (SPs) as contrast agents can be used in the photoacoustic imaging (PAI) of transplanted hESC-CMs in living mouse hearts. This is achieved by virtue of two benefits of PANPs. First, strong photoacoustic (PA) signals and specific spectral features of SPs allow PAI to sensitively detect and distinguish a small number of PANP-labeled cells (2000) from background tissues. Second, the PANPs show a high efficiency for hESC-CM labeling without adverse effects on cell structure, function, and gene expression. Assisted by ultrasound imaging, the delivery and engraftment of hESC-CMs in living mouse hearts can be assessed by PANP-based PAI with high spatial resolution (≈100 µm). In summary, this study explores and validates a novel application of SPs as a PA contrast agent to track labeled cells with high sensitivity and accuracy in vivo, highlighting the advantages of integrating PAI and PANPs to advance cardiac regenerative therapies. Ultrasensitive semiconducting polymer nanoparticles (SPNs) for photoacoustic (PA) imaging of transplantation and engraftment of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) are developed. The SPNs have strong and stable PA signals as well as a specific PA spectrum, which facilitate real-time monitoring of delivery and localization of hESC-CMs in mouse hearts for cardiac regenerative therapy.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201704939

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.