3 years ago

Mesoporous LaMnO3+δ perovskite from spray−pyrolysis with superior performance for oxygen reduction reaction and Zn−air battery

Mesoporous LaMnO3+δ perovskite from spray−pyrolysis with superior performance for oxygen reduction reaction and Zn−air battery
Oxygen reduction reaction (ORR) is the key reaction in various electrochemical energy devices. This work reports an inexpensive mesoporous LaMnO3+δ perovskite for ORR with remarkable activity, synthesized by a facile aerosol-spray assisted approach. The mesoporous LaMnO3+δ material shows a factor of 3.1 higher activity (at 0.9V vs. RHE) than LaMnO3 obtained from co-precipitation method (LMO-CP). Based on results of x-ray absorption near-edge spectroscopy (XANES), x-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) analysis, we conclude that the chemical state of surface Mn and the high surface area are the sources to the notably enhanced activity. The study of Zn-air batteries device further confirmed a Pt/C comparable performance in the practical devices with the novel mesoporous LaMnO3+δ catalyst, where the power density at 200mA/cm2 is only 2.1% lower than in the battery with same-loaded Pt/C catalyst. Therefore, the high mass activity and low-cost of Mn/La may make LaMnO3+δ further approach to the application of electrochemical devices.

Publisher URL: www.sciencedirect.com/science

DOI: S2211285517306948

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.