3 years ago

A Schmidt rearrangement-mediated synthesis of novel tetrahydro-benzo[1,4]diazepin-5-ones as potential anticancer and antiprotozoal agents

A Schmidt rearrangement-mediated synthesis of novel tetrahydro-benzo[1,4]diazepin-5-ones as potential anticancer and antiprotozoal agents
Novel tetrahydro-5H-benzo[e][1,4]diazepin-5-ones, several of them, containing the quinoline pharmacophore, were synthesized via a Schmidt rearrangement from their corresponding 1,2,3,4-tetrahydro-4-quinolones mediated by the NaN3/H2SO4 reaction conditions. Twelve of the obtained compounds were in vitro screened by the US National Cancer Institute (NCI) for their ability to inhibit 60 different human tumor cell lines, where compound 24a presented a remarkable activity against 58 of the 60 cancer cell lines, with the most important GI50 values ranging from 0.047 to 8.16 μM and LC50 values ranging from 9.4 to > 100 μM. Additionally, some of them were evaluated as antimalarial, antitrypanosomal and antileishmanial agents. The best antimalarial response was observed for compound 22g with an EC50 = 13.61 μg/mL for Plasmodium falciparum, while compound 24d exhibited high activity against Trypanosoma cruzi. and Leishmania (V) panamensis with EC50 = 2.78 μg/mL and 3.35 μg/mL respectively.

Publisher URL: www.sciencedirect.com/science

DOI: S0223523417308164

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.