3 years ago

Silicon nanowire CMOS NOR logic gates featuring one-volt operation on bendable substrates

Jeongje Moon, Sangsig Kim, Doohyeok Lim, Yoonjoong Kim


In this study, we propose complementary metal-oxide−semiconductor (CMOS) NOR logic gates consisting of silicon nanowire (NW) arrays on bendable substrates. A circuit consisting of two p-channel NW field-effect transistors (NWFETs) in series and two n-channel NWFETs in parallel is constructed to operate a twoinput CMOS NOR logic gate. The NOR logic gates operate at a low supply voltage of 1 V with a rail-to-rail logic swing and a high voltage gain of approximately −3.0. The exact NOR logic functionality is achieved owing to the superior electrical characteristics of the well-aligned p- and n-NWFETs, which are obtained using conventional Si-based CMOS technology. Moreover, the NOR logic gates exhibit stable characteristics and have good mechanical properties. The proposed bendable NW CMOS NOR logic gates are promising building blocks for future bendable integrated electronics.

Publisher URL: https://link.springer.com/article/10.1007/s12274-017-1889-4

DOI: 10.1007/s12274-017-1889-4

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.