3 years ago

Programmable DNA-responsive microchip for the capture and release of circulating tumor cells by nucleic acid hybridization

Shan Guo, Xiang Zhou, Weihua Huang, Zhuoran Jiang, Haiyan Huang, Yuqi Chen, Xujing Deng, Songmei Liu, Min Xie

Abstract

The detection and analysis of circulating tumor cells (CTCs) from patients´ blood is important to assess tumor status; however, it remains a challenge. In the present study, we developed a programmable DNA-responsive microchip for the highly efficient capture and nondestructive release of CTCs via nucleic acid hybridization. Transparent and patternable substrates with hierarchical architectures were integrated into the microchip with herringbone grooves, resulting in greatly enhanced cell-surface interaction via herringbone micromixers, more binding sites, and better matched topographical interactions. In combination with a high-affinity aptamer, target cancer cells were specifically and efficiently captured on the chip. Captured cancer cells were gently released from the chip under physiological conditions using toehold-mediated strand displacement, without any destructive factors for cells or substrates. More importantly, aptamer-containing DNA sequences on the surface of the retrieved cancer cells could be further amplified by polymerase chain reaction (PCR), facilitating the detection of cell surface biomarkers and characterization of the CTCs. Furthermore, this system was extensively applied to the capture and release of CTCs from patients´ blood samples, demonstrating a promising high-performance platform for CTC enrichment, release, and characterization.

Publisher URL: https://link.springer.com/article/10.1007/s12274-017-1885-8

DOI: 10.1007/s12274-017-1885-8

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.