3 years ago

Ciprofloxacin-nitroxide hybrids with potential for biofilm control

Ciprofloxacin-nitroxide hybrids with potential for biofilm control
As bacterial biofilms display extreme tolerance to conventional antibiotic treatments, it has become imperative to develop new antibacterial strategies with alternative mechanisms of action. Herein, we report the synthesis of a series of ciprofloxacin-nitroxide conjugates and their corresponding methoxyamine derivatives in high yield. This was achieved by linking various nitroxides or methoxyamines to the secondary amine of the piperazine ring of ciprofloxacin using amide bond coupling. Biological evaluation of the prepared compounds on preformed P. aeruginosa biofilms in flow cells revealed substantial dispersal with ciprofloxacin-nitroxide hybrid 25, and virtually complete killing and removal (94%) of established biofilms in the presence of ciprofloxacin-nitroxide hybrid 27. Compounds 2528 were shown to be non-toxic in both human embryonic kidney 293 (HEK 293) cells and human muscle rhabdomyosarcoma (RD) cells at concentrations up to 40 μM. Significantly, these hybrids demonstrate the potential of antimicrobial-nitroxide agents to overcome the resistance of biofilms to antimicrobials via stimulation of biofilm dispersal or through direct cell killing.

Publisher URL: www.sciencedirect.com/science

DOI: S0223523417305123

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.