3 years ago

Control of nanoparticle size and amount by using the mesh grid and applying DC-bias to the substrate in silane ICP-CVD process

Shin-Jae You, Seung-Wan Yoo, Nong-Moon Hwang, Dae-Jin Seong, Jung-Hyung Kim

Abstract

The effect of applying a bias to the substrate on the size and amount of charged crystalline silicon nanoparticles deposited on the substrate was investigated in the inductively coupled plasma chemical vapor deposition process. By inserting the grounded grid with meshes above the substrate, the region just above the substrate was separated from the plasma. Thereby, crystalline Si nanoparticles formed by the gas-phase reaction in the plasma could be deposited directly on the substrate, successfully avoiding the formation of a film. Moreover, the size and the amount of deposited nanoparticles could be changed by applying direct current bias to the substrate. When the grid of 1 × 1-mm-sized mesh was used, the nanoparticle flux was increased as the negative substrate bias increased from 0 to – 50 V. On the other hand, when a positive bias was applied to the substrate, Si nanoparticles were not deposited at all. Regardless of substrate bias voltages, the most frequently observed nanoparticles synthesized with the grid of 1 × 1-mm-sized mesh had the size range of 10–12 nm in common. When the square mesh grid of 2-mm size was used, as the substrate bias was increased from – 50 to 50 V, the size of the nanoparticles observed most frequently increased from the range of 8–10 to 40–45 nm but the amount that was deposited on the substrate decreased.

Publisher URL: https://link.springer.com/article/10.1007/s11051-017-4068-3

DOI: 10.1007/s11051-017-4068-3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.