3 years ago

Mycobacterium tuberculosis Rv3651 is a triple sensor-domain protein

Christoph Grundner, Andrew Frando, Thomas E. Edwards, Bart L. Staker, Jan Abendroth, Peter J. Myler, Isabelle Q. Phan
The genome of the human pathogen Mycobacterium tuberculosis (Mtb) encodes ∼4,400 proteins, but one third of them have unknown functions. We solved the crystal structure of Rv3651, a hypothetical protein with no discernible similarity to proteins with known function. Rv3651 has a three-domain architecture that combines one cGMP-specific phosphodiesterases, adenylyl cyclases and FhlA (GAF) domain and two Per-ARNT-Sim (PAS) domains. GAF and PAS domains are typically sensor domains that are linked to signaling effector molecules. Unlike these sensor-effector proteins, Rv3651 is an unusual sensor domain-only protein with highly divergent sequence. The structure suggests that Rv3651 integrates multiple different signals and serves as a scaffold to facilitate signal transfer. This article is protected by copyright. All rights reserved.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/pro.3343

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.