3 years ago

Lewis acid enhancement by hydrogen-bond donors for asymmetric catalysis

Alan M. Hyde, Steven M. Banik, Eric N. Jacobsen, Anna Levina

Small-molecule dual hydrogen-bond (H-bond) donors such as ureas, thioureas, squaramides, and guanidinium ions enjoy widespread use as effective catalysts for promoting a variety of enantioselective reactions. However, these catalysts are only weakly acidic and therefore require highly reactive electrophilic substrates to be effective. We introduce here a mode of catalytic activity with chiral H-bond donors that enables enantioselective reactions of relatively unreactive electrophiles. Squaramides are shown to interact with silyl triflates by binding the triflate counterion to form a stable, yet highly Lewis acidic, complex. The silyl triflate-chiral squaramide combination promotes the generation of oxocarbenium intermediates from acetal substrates at low temperatures. Enantioselectivity in nucleophile additions to the cationic intermediates is then controlled through a network of noncovalent interactions between the squaramide catalyst and the oxocarbenium triflate.

Publisher URL: http://science.sciencemag.org/cgi/content/short/358/6364/761

DOI: 10.1126/science.aao5894

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.