3 years ago

Motions of the SecA protein motor bound to signal peptide: Insights from molecular simulations and essential motion analyses

Motions of the SecA protein motor bound to signal peptide: Insights from molecular simulations and essential motion analyses
SecA is an essential part of the Sec pathway for protein secretion in bacteria. In this pathway, SecA interacts with the N-terminal fragment of the secretory protein – the signal peptide, and couples binding and hydrolysis of adenosine triphosphate with movement of the secretory protein across the SecY protein translocon. How interactions with the signal peptide alter the conformational dynamics and long-distance conformational couplings of SecA is a key open question that we address here with molecular dynamics techniques. Analyses of protein motions indicate that the signal peptide alters SecA dynamics not only at the site where this peptide binds, but also at a nucleotide-binding domain. Hydrogen bond clusters contribute to the long-distance propagation of changes in SecA dynamics.

Publisher URL: www.sciencedirect.com/science

DOI: S0005273617303553

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.