5 years ago

Remarks on High Reynolds Numbers Hydrodynamics and the Inviscid Limit

Vlad Vicol, Peter Constantin


We prove that any weak space-time \(L^2\) vanishing viscosity limit of a sequence of strong solutions of Navier–Stokes equations in a bounded domain of \({\mathbb R}^2\) satisfies the Euler equation if the solutions’ local enstrophies are uniformly bounded. We also prove that \(t-a.e.\) weak \(L^2\) inviscid limits of solutions of 3D Navier–Stokes equations in bounded domains are weak solutions of the Euler equation if they locally satisfy a scaling property of their second-order structure function. The conditions imposed are far away from boundaries, and wild solutions of Euler equations are not a priori excluded in the limit.

Publisher URL: https://link.springer.com/article/10.1007/s00332-017-9424-z

DOI: 10.1007/s00332-017-9424-z

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.