5 years ago

Novel combination of histone methylation modulators with therapeutic synergy against acute myeloid leukemia in vitro and in vivo

Acute myeloid leukemia (AML) is a hematological malignancy with rapid disease progression and often becomes lethal without treatment. Development of effective new therapies is essential to improve the clinical outcome of AML patients. Enhancer of zeste homolog 2 (EZH2) and lysine specific demethylase 1 (LSD1) play important roles in epigenetic regulation and their altered expressions have been observed in cancer. Although EZH2 and LSD1 have opposite histone methylation functions, we found that both enzymes were paradoxically up-regulated in AML cells. Importantly, a combined inhibition of EZH2 and LSD1 resulted in a synergistic activity against AML in vitro and in vivo. Such synergy was mechanistically correlated with up-regulation of H3K4me1/2 and H3K9Ac and down-regulation of H3K27me3, leading to a decrease of anti-apoptotic protein Bcl-2. These epigenetic alterations also compromised the mitochondrial respiration capacity and glycolytic activity and resulted in ATP depletion, a key event contributing to the potent cytotoxic effect of the drug combination. Taken together, our work identified a novel therapeutic approach against AML by combining two small molecules that inhibit different histone methylation-modulating proteins with apparently opposite enzyme activities. Such a new drug combination strategy likely has significant clinical implications since epigenetic modulators are currently in clinical trials.

Publisher URL: www.sciencedirect.com/science

DOI: S030438351730650X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.