5 years ago

Novel pyridyl nitrofuranyl isoxazolines show antibacterial activity against multiple drug resistant Staphylococcus species

Novel pyridyl nitrofuranyl isoxazolines show antibacterial activity against multiple drug resistant Staphylococcus species
A novel series of pyridyl nitrofuranyl isoxazolines were synthesized and evaluated for their antibacterial activity against multiple drug resistant (MDR) Staphylococcus strains. Compounds with piperazine linker between the pyridyl group and isoxazoline ring showed better activity when compared to compounds without the piperazine linker. 3-Pyridyl nitrofuranyl isoxazoline with a piperazine linker was found to be more active than corresponding 2-and 4-pyridyl analogues with MICs in the range of 4–32µg/mL against MDR Staphylococcus strains. The eukaryotic toxicity of the compounds was tested by MTT assay and were found to be non-toxic against both non-tumour lung fibroblast WI-38 and cervical cancer cell line HeLa. The most active pyridyl nitrofuranyl isoxazoline compound showed improved activity against a panel of Staphylococcus strains compared to nitrofuran group containing antibiotic nitrofurantoin.

Publisher URL: www.sciencedirect.com/science

DOI: S0968089617306909

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.