4 years ago

Assessment of hydrogels for bioprinting of endothelial cells

Stefan Zimmermann, Kevin Tröndle, Julian Riba, Leo Benning, Ludwig Gutzweiler, Günter Finkenzeller, Peter Koltay, Roland Zengerle, G. Björn Stark
In tissue engineering applications, vascularization can be accomplished by co-implantation of tissue forming cells and endothelial cells (ECs), whereby the latter are able to form functional blood vessels. The use of three-dimensional (3D) bioprinting technologies has the potential to improve the classical tissue engineering approach because these will allow the generation of scaffolds with high spatial control of endothelial cell allocation. This study focuses on a side by side comparisons of popular commercially available bioprinting hydrogels (matrigel, fibrin, collagen, gelatin, agarose, Pluronic F-127, alginate and alginate/gelatin) in the context of their physicochemical parameters, their swelling/degradation characteristics, their biological effects on vasculogenesis-related EC parameters and their printability. The aim of this study was to identify the most suitable hydrogel or hydrogel combination for inkjet printing of ECs to build pre-vascularized tissue constructs. Most tested hydrogels displayed physicochemical characteristics suitable for inkjet printing. However, Pluronic F-127 and the alginate/gelatin blend were rapidly degraded when incubated in cell culture medium. Agarose, Pluronic F-127, alginate and alginate/gelatin hydrogels turned out to be unsuitable for bioprinting of ECs because of their non-adherent properties and/or their incapability to support EC proliferation. Gelatin was able to support EC proliferation and viability but was unable to support endothelial cell sprouting. Our experiments revealed fibrin and collagen to be most suitable for bioprinting of ECs, because these hydrogels showed acceptable swelling/degradation characteristics, supported vasculogenesis-related EC parameters and showed good printability. Moreover, ECs in constructs of preformed spheroids survived the printing process and formed capillary-like cords. This article is protected by copyright. All rights reserved.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jbm.a.36291

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.