4 years ago

Nervous system excitability and joint stiffness following short-term dynamic ankle immobilization

Joint immobilization has been demonstrated to modify neural excitability in subsets of healthy populations, leading to disinhibition of cortical and reflexive pathways. However, these findings may have limited clinical application as most models have investigated casting and rigid immobilization, while many musculoskeletal injuries often utilize dynamic immobilization devices such as boot immobilizers and pneumatic splints that allow for modified ambulation. We therefore aimed to determine the short-term effects of ambulation in ankle immobilization devices on nervous system excitability and stiffness in able-bodied individuals. A repeated-measures design was implemented where 12 healthy individuals were tested for cortical excitability to the ankle musculature using transcranial magnetic stimulation, reflexive excitability using the Hoffmann reflex, and ankle joint stiffness using arthrometry before and after 30min of ambulation with a boot immobilizer, pneumatic leg splint, or barefoot. Motor evoked potential (MEP), cortical silent period (CSP), Hmax to Mmax ratio, and ankle joint displacement were extracted as dependent variables. Results indicated that despite the novel motor demands of walking in immobilization devices, no significant changes in cortical excitability (F0.335, P 0.169), reflexive excitability (F0.027, P 0.083), or joint stiffness (F0.558, P 0.169) occurred. These findings indicate that short-term ambulation in dynamic immobilization devices does not modify neural excitability despite forced constraints on the sensorimotor system. We may therefore conclude that modifications to neural excitability in previous immobilization models are mediated by long-term nervous system plasticity rather than acute mechanisms, and there appear to be no robust changes in corticomotor or spinal excitability acutely posed by ambulation with immobilization devices.

Publisher URL: www.sciencedirect.com/science

DOI: S0966636217309335

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.