5 years ago

Free Energy Coupling between DNA Bending and Base Flipping

Free Energy Coupling between DNA Bending and Base Flipping
Ning Ma, Arjan van der Vaart
Free energy simulations are presented to probe the energetic coupling between DNA bending and the flipping of a central thymine in double stranded DNA 13mers. The energetics are shown to depend on the neighboring base pairs, and upstream C or T or downstream C tended to make flipping more costly. Flipping to the major groove side was generally preferred. Bending aids flipping, by pushing the system up in free energy, but for small and intermediate bending angles the two were uncorrelated. At higher bending angles, bending and flipping became correlated, and bending primed the system for base flipping toward the major groove. Flipping of the 6-4 pyrimidine-pyrimidone and pyrimidine dimer photoproducts is shown to be more facile than for undamaged DNA. For the damages, major groove flipping was preferred, and DNA bending was much facilitated in the 6-4 pyrimidine-pyrimidone damaged system. Aspects of the calculations were verified by structural analyses of protein–DNA complexes with flipped bases.

Publisher URL: http://dx.doi.org/10.1021/acs.jcim.7b00215

DOI: 10.1021/acs.jcim.7b00215

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.