5 years ago

Machine Learning Consensus Scoring Improves Performance Across Targets in Structure-Based Virtual Screening

Machine Learning Consensus Scoring Improves Performance Across Targets in Structure-Based Virtual Screening
Lauren A. Michael, Spencer S. Ericksen, Michael A. Newton, Huikun Zhang, Scott A. Wildman, F. Michael Hoffmann, Haozhen Wu
In structure-based virtual screening, compound ranking through a consensus of scores from a variety of docking programs or scoring functions, rather than ranking by scores from a single program, provides better predictive performance and reduces target performance variability. Here we compare traditional consensus scoring methods with a novel, unsupervised gradient boosting approach. We also observed increased score variation among active ligands and developed a statistical mixture model consensus score based on combining score means and variances. To evaluate performance, we used the common performance metrics ROCAUC and EF1 on 21 benchmark targets from DUD-E. Traditional consensus methods, such as taking the mean of quantile normalized docking scores, outperformed individual docking methods and are more robust to target variation. The mixture model and gradient boosting provided further improvements over the traditional consensus methods. These methods are readily applicable to new targets in academic research and overcome the potentially poor performance of using a single docking method on a new target.

Publisher URL: http://dx.doi.org/10.1021/acs.jcim.7b00153

DOI: 10.1021/acs.jcim.7b00153

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.