5 years ago

A Coarse-Grained Force Field Parameterized for MgCl2 and CaCl2 Aqueous Solutions

A Coarse-Grained Force Field Parameterized for MgCl2 and CaCl2 Aqueous Solutions
Zheng Gong, Huai Sun
Calcium and magnesium ions play important roles in many physicochemical processes. To facilitate the investigation of phenomena related to these ions that occur over large length and time scales, a coarse-grained force field (CGFF) is developed for MgCl2 and CaCl2 aqueous solutions. The ions are modeled by CG beads with characteristics of hydration shells. To accurately describe the nonideal behavior of the solutions, osmotic coefficients in a wide range of concentrations were used as guidance for parametrization. The osmotic coefficients were obtained from the chemical potential increments of water calculated using the Bennett acceptance ratio (BAR) method. The result CGFF accurately reproduces experimental osmotic coefficients, densities, surface tensions, and cation–anion separations of calcium chloride and magnesium chloride solutions at molalities up to 3.0 mol/kg. As a preliminary application, the force field is applied to simulate aggregations of sodium dodecyl sulfate (SDS) in calcium chloride solution, and the simulation results are consistent with experimental observations.

Publisher URL: http://dx.doi.org/10.1021/acs.jcim.7b00206

DOI: 10.1021/acs.jcim.7b00206

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.