4 years ago

Inferring within-herd transmission parameters for African swine fever virus using mortality data from outbreaks in the Russian Federation

C. Guinat, S. Gubbins, L. Dixon, D. U. Pfeiffer, A. Gogin, T. Porphyre
Mortality data are routinely collected for many livestock and poultry species, and they are often used for epidemiological purposes, including estimating transmission parameters. In this study, we infer transmission rates for African swine fever virus (ASFV), an important transboundary disease of swine, using mortality data collected from nine pig herds in the Russian Federation with confirmed outbreaks of ASFV. Parameters in a stochastic model for the transmission of ASFV within a herd were estimated using approximate Bayesian computation. Estimates for the basic reproduction number varied amongst herds, ranging from 4.4 to 17.3. This was primarily a consequence of differences in transmission rate (range: 0.7–2.2), but also differences in the mean infectious period (range: 4.5–8.3 days). We also found differences amongst herds in the mean latent period (range: 5.8–9.7 days). Furthermore, our results suggest that ASFV could be circulating in a herd for several weeks before a substantial increase in mortality is observed in a herd, limiting the usefulness of mortality data as a means of early detection of an outbreak. However, our results also show that mortality data are a potential source of data from which to infer transmission parameters, at least for diseases which cause high mortality.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/tbed.12748

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.