5 years ago

An ultra-stable single-chain insulin analog resists thermal inactivation and exhibits biological signaling duration equivalent to the native protein.

Yen-Shan Chen, Kelley Carr, Khadijah Aldabbagh, Manijeh Phillips, Yanwu Yang, Jonathan Whittaker, Nelson B Phillips, Nischay Rege, Michael D Glidden, Michael C Lawrence, Mamuni Swain, Faramarz Ismail-Beigi, Nalinda P Wickramasinghe, Vivien C Yee, Michael A Weiss, Yi Peng
Thermal degradation of insulin complicates its delivery and use. Previous efforts to engineer ultra-stable analogs were confounded by prolonged cellular signaling in vivo, complicating mealtime therapy and of unclear safety. We therefore sought an ultra-stable analog whose potency and duration of action on intravenous bolus injection in diabetic rats are indistinguishable from wild-type (WT) insulin. Here, we describe the structure, function and stability of such an analog: a 57-residue single-chain insulin (SCI) with multiple acidic substitutions. Cell-based studies revealed native-like signaling properties with negligible mitogenic activity. Its crystal structure, determined as a novel zinc-free hexamer at 2.8 Å, revealed a native insulin fold with incomplete or absent electron density in the C domain; complementary NMR studies are described in a companion article. The stability of the analog (ΔGu 5.0(±0.1) kcal/mol at 25 °C) was greater than that of WT insulin (3.3(±0.1) kcal/mol). On gentle agitation the SCI retained full activity for >140 days at 45 °C and >48 hours at 75 °C. Whereas WT insulin forms large and heterogeneous aggregates above the standard 0.6 mM pharmaceutical strength, perturbing the pharmacokinetic properties of concentrated formulations, dynamic light scattering and size-exclusion chromatography revealed only limited SCI self-assembly and aggregation in the concentration range 1-7 mM. These findings indicate that marked resistance to thermal inactivation in vitro is compatible with native duration of activity in vivo. Such a combination of favorable biophysical and biological properties suggests that SCIs could provide a global therapeutic platform without a cold chain.

Publisher URL: http://doi.org/10.1074/jbc.M117.808626

DOI: 10.1074/jbc.M117.808626

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.