5 years ago

Computational and Experimental Evaluation of Designed β-Cap Hairpins Using Molecular Simulations and Kinetic Network Models

Computational and Experimental Evaluation of Designed β-Cap Hairpins Using Molecular Simulations and Kinetic Network Models
Niels H. Andersen, Brandon L. Kier, Vincent A. Voelz, Yunhui Ge
Molecular simulation has been used to model the detailed folding properties of peptides, yet prospective computational peptide design by such approaches remains challenging and nontrivial. To test the accuracy of simulation-based hairpin design, we characterized the folding properties of a series of so-called β-cap hairpin peptides designed to mimic a conserved hairpin of LapD, a bacterial intracellular signaling protein, both experimentally by NMR spectroscopy and computationally by implicit-solvent replica-exchange molecular dynamics using three different AMBER force fields (ff96, ff99sb-ildn, and ff99sb-ildn-NMR). A unique challenge presented by these designs is the presence of both a terminal Trp-Trp capping motif and a conserved GWxQ motif in the hairpin turn required for binding to LapG. Consistent with previous studies, we found AMBER ff96 to be the most accurate when used with the OBC GBSA implicit solvent model, despite its known bias toward β-sheet conformations when used in explicit-solvent simulations. To gain microscopic insight into the folding landscape of the hairpin designs, we additionally performed parallel simulations on the Folding@home distributed computing platform using AMBER ff99sb-ildn-NMR with TIP3P explicit solvent. Markov state models (MSMs) built from trajectory data reveal a number of non-native interactions between Trp and other amino acid side chains, creating potential problems in achieving well-folded hairpin structures in solution.

Publisher URL: http://dx.doi.org/10.1021/acs.jcim.7b00132

DOI: 10.1021/acs.jcim.7b00132

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.