4 years ago

Orthogonal Chemical Modification of Template-Synthesized Nanostructures with DNA

Orthogonal Chemical Modification of Template-Synthesized Nanostructures with DNA
Tuncay Ozel, Taegon Oh, Chad A. Mirkin, Jessie C. Ku
Very few chemical strategies for the selective functionalization of nanostructures have been developed despite their potential for controlling high-order assembly processes. We report a novel approach for the selective chemical functionalization and localized assembly of one-dimensional nanostructures (rods), based upon the systematic activation (DNA functionalization) and passivation (self-assembled monolayers) of specific surface sites through the use of orthogonal chemical reactions on electrochemically grown metal nanorod arrays in porous anodic aluminum oxide templates. The ability to orthogonally functionalize the ends or the side of a nanorod, as well as the gaps between two rods, with different DNA strands allows one to synthesize nanostructure assemblies that would be difficult to realize any other way and that could ultimately be utilized for making a wide variety of device architectures.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b03111

DOI: 10.1021/jacs.7b03111

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.