5 years ago

Recent advances in the prediction of non-CYP450-mediated drug metabolism

Recent advances in the prediction of non-CYP450-mediated drug metabolism
Simran R. Agrawal, Vaibhav A. Dixit, L. Arun Lal
Computational models of drug metabolism prediction have focused mainly on cytochrome P450 enzymes, because drug–drug interactions, reactive metabolite formation, hepatotoxicity, idiosyncratic adverse drug interactions, and/or loss of efficacy of many drugs were the results of interactions with CYP450s. Metabolic regioselectivity and isoform specificity prediction models for CYP450-catalyzed reactions have reached approximately 95% accuracy. Thus, a new drug candidate is less likely to show unexpected metabolic profile due to metabolism via CYP450 pathways. For such candidates, secondary metabolic Phase I and II enzymes are likely to play an expected (or unexpected) role in drug metabolism. The importance of flavin monooxygenases (FMOs), aldehyde and alcohol dehydrogenase, monoamine oxidase from the Phase I and UDP-glucuronosyltransferase (UGT), sulfotransferase, glutathione S-transferase, and methyltransferase from Phase II has increased and United States Food and Drug Administration guidelines on NDA have specific recommendations for in vitro and in vivo testing against these enzymes. Thus, there is an urgent requirement of reliable predictive models for drug metabolism catalyzed by these enzymes. In this review, we have classified drug metabolism prediction models (site of metabolism, isoform specificity, and kinetic parameter) for these enzymes into Phase I and II. When such models are unavailable, we discuss the Quantitative Structure Activity Relationship (QSAR), pharmacophore, docking, dynamics, and reactivity studies performed for the prediction of substrates and inhibitors. Recently published models for FMO and UGT are discussed. The need for comprehensive, widely applicable, sequential primary and secondary metabolite prediction is highlighted. Potential difficulties and future prospectives in the development of such models are discussed. For further resources related to this article, please visit the WIREs website. Developments in the computational prediction of drug metabolism by non-CYP450 enzymes have been slow, but recent recognition of toxicity has given impetus. Recent developments in this area are discussed and urgent need for the development of sequential and comprehensive models for Phase I and Phase II metabolic processes is highlighted.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/wcms.1323

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.