5 years ago

Polarizable force field development for lipids and their efficient applications in membrane proteins

Polarizable force field development for lipids and their efficient applications in membrane proteins
Liaoran Cao, Guohui Li, Xiangda Peng, Huiying Chu
Polarizable force fields have been developed due to the intrinsic problem of additive force fields in modeling electrostatic interactions. Because of the capability to accurately describe the behavior of systems with significant changes in their electrostatic environments, polarizable force fields might be a decent tool to study membrane-related systems, such as lipid bilayers, though not so much progresses have been made. In this overview article we described the developments of a variety of polarizable force fields, including the corresponding theories, benchmark examples, and more specifically we were focused on the applications on lipid membranes. For further resources related to this article, please visit the WIREs website. The ball-and-stick scheme of a lipid bilayer molecule and its corresponding electrostatic potential surface under polarizable force field.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/wcms.1312

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.