4 years ago

Improvement of feedlot operations through statistical learning and business analytics tools

A decision-support, modeling tool is developed that can project future cattle growth patterns in a feedlot based on a low dimensionality dataset available at the start of the feeding process. This work adapts the predictive performance of two well-known statistical machine modeling tools, gradient boosting and random forest regression, to predict future cattle growth. Time series analysis techniques are then used to create an ensemble method that further improves prediction accuracy from individual modeling outputs. Hierarchical clustering techniques are used to leverage projected growth patterns to increase group homogeneity when assigning cattle to different feeding pens. Finally, a profit maximization method is developed that estimates the optimal time each individual cattle should remain in the system under different revenue and cost estimates. The purpose of this work is to incentivize the implementation of modern statistical learning tools in cattle management operations, especially within low-to-mid scale operations that traditionally rely on the expertise of its workers and have limited cattle and process information. Access to ‘off-the-shelf’ statistical learning tools, requiring minimal user-interaction, not only enhances prediction accuracy but helps automate operational decisions. This results in higher process efficiencies and improved standardization practices, while also helping identify profit opportunities. Finally, integrating these components into a single operating framework allows the tool to adapt to changes in data characteristics, which is especially important within non-standardized processes. We show the application of this tool through a case study implementation on a mid-scale operation in the northwestern state of Sonora, Mexico. From our case-study results, it was found that the modeling tool can satisfactorily predict growth patterns based on a low-dimensional set. It also can also capture historic decision-making when segmenting cattle into homogenous groups during their feeding process. Furthermore, it can help identify profit opportunities when estimating optimal cattle system times under varying market conditions.

Publisher URL: www.sciencedirect.com/science

DOI: S0168169916312030

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.