4 years ago

Recovery from temporary ER stress in plants relies on tissue specific and largely independent roles of bZIP28 and bZIP60 as well as an antagonizing function of BAX-Inhibitor1 onto the pro-adaptive signaling mediated by bZIP28

Cristina Ruberti, Federica Brandizzi, YaShiuan Lai
The unfolded protein response (UPR) is an ancient signaling pathway that commits to life-or-death outcomes in response to proteotoxic stress in the endoplasmic reticulum (ER). In plants, the membrane-tethered transcription factor bZIP28 and the ribonuclease-kinase IRE1 along with its splicing target, bZIP60, govern the two cytoprotective UPR signaling pathways known to date. The conserved ER membrane-associated BAX inhibitor1 (BI1) modulates ER stress-induced programmed cell death through yet-unknown mechanisms. Despite the significance of the UPR for cell homeostasis, in plants the regulatory circuitry underlying ER stress resolution is still largely unmapped. To gain insights into the coordination of plant UPR strategies, we analyzed the functional relationship of the UPR modulators through the analysis of single and higher order mutants of IRE1, bZIP60, bZIP28 and BI1 in experimental conditions causing either temporary or chronic ER stress. We established a functional duality of bZIP28 and bZIP60 as they exert partially independent tissue-specific roles in recovery from ER stress, but redundantly actuate survival strategies in chronic ER stress. We also discovered that BI1 attenuates the pro-survival function of bZIP28 in ER stress resolution and, differently to animal cells, it does not temper the ribonuclease activity of IRE1 under temporary ER stress. Together these findings reveal a functional independence of bZIP28 and bZIP60 in plant UPR, and identify an antagonizing role of BI1 onto the pro-adaptive signaling mediated by bZIP28, bringing to light a distinctive complexity of UPR management in plants. This article is protected by copyright. All rights reserved.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/tpj.13768

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.