4 years ago

All-Atom Four-Body Knowledge-Based Statistical Potentials to Distinguish Native Protein Structures from Nonnative Folds.

Majid Masso
Recent advances in understanding protein folding have benefitted from coarse-grained representations of protein structures. Empirical energy functions derived from these techniques occasionally succeed in distinguishing native structures from their corresponding ensembles of nonnative folds or decoys which display varying degrees of structural dissimilarity to the native proteins. Here we utilized atomic coordinates of single protein chains, comprising a large diverse training set, to develop and evaluate twelve all-atom four-body statistical potentials obtained by exploring alternative values for a pair of inherent parameters. Delaunay tessellation was performed on the atomic coordinates of each protein to objectively identify all quadruplets of interacting atoms, and atomic potentials were generated via statistical analysis of the data and implementation of the inverted Boltzmann principle. Our potentials were evaluated using benchmarking datasets from Decoys-'R'-Us, and comparisons were made with twelve other physics- and knowledge-based potentials. Ranking 3rd, our best potential tied CHARMM19 and surpassed AMBER force field potentials. We illustrate how a generalized version of our potential can be used to empirically calculate binding energies for target-ligand complexes, using HIV-1 protease-inhibitor complexes for a practical application. The combined results suggest an accurate and efficient atomic four-body statistical potential for protein structure prediction and assessment.

Publisher URL: http://doi.org/10.1155/2017/5760612

DOI: 10.1155/2017/5760612

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.