4 years ago

Modeling the transport of sodium dodecyl benzene sulfonate in riverine sediment in the presence of multi-walled carbon nanotubes

Modeling the transport of sodium dodecyl benzene sulfonate in riverine sediment in the presence of multi-walled carbon nanotubes
The environmental risks of carbon nanotubes have received considerable attention. In this work, the effects of multi-walled carbon nanotubes (MWCNTs) on the adsorption of sodium dodecyl benzene sulfonate (SDBS) by riverine sediment and the transport of SDBS in sediment were studied. MWCNTs could significantly increase the adsorption capacity of the sediment for SDBS, thus affecting the transport of SDBS in sediment. Maximum adsorption capacity of the sediment for SDBS increases from 2.29 to 2.99 mg/g with the increasing content of MWCNTs from 0% to 1.5%. Breakthrough curves (BTCs) of SDBS obtained from the column experiments were described by the convection-dispersion equation, Thomas model, and Yan model. The estimated retardation factor R increases with the incorporation of MWCNTs, either in water or sediment. Additionally, the value of R is well correlated to the content of MWCNTs in sediment. Compared with Thomas model, Yan model is more suitable for fitting the BTCs with all the values of R 2 ≥ 0.951, but it tends to overestimate the maximum adsorption capacity when the content of MWCNTs in sediment is relatively higher. The results of SDBS retention in sediment indicate that MWCNTs can increase the accumulation of SDBS in the top sediment layer, while they can impede the transport of SDBS into deeper sediment layer when incorporated into the sediment. These effects should be taken into consideration for risk assessment of CNTs in the aquatic environment.

Publisher URL: www.sciencedirect.com/science

DOI: S0043135417309193

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.