4 years ago

Electrochemical activation of persulfates at BDD anode: Radical or nonradical oxidation?

Electrochemical activation of persulfates at BDD anode: Radical or nonradical oxidation?
The combination of persulfates (peroxydisulfate (PDS) and peroxymonosulfate (PMS)) and electrolysis using boron-doped diamond (BDD) anode is a promising green advanced oxidation process. In comparison with electrolysis alone, electrochemical activation of persulfates at BDD anode considerably enhanced the degradation of carbamazepine (CBZ). The experimental results indicate that the surface-adsorbed hydroxyl radical (HO) played the dominant role. The generally proposed nonradical oxidation mechanism ignored hydroxyl radical (HO) oxidation because low concentration of radical scavenger (<10 M methanol or 5 M tertbutanol) could not effectively scavenge the surface-adsorbed HO. The quasi steady-state concentration of HO was estimated to be about 5.0–9.1 × 10−12 M for electrolysis with BDD anode, and it was increased to 1.1–1.6 × 10−11 M and 3.2–5.0 × 10−11 M for addition of 5 mM PDS and PMS, respectively. The results of cyclic voltammetry (CV) and chronoamperometry as well as evolution of dissolved oxygen (DO) reveal that the electrochemically activated persulfates molecule (PDS/PMS) promoted the production of HO via water dissociation at BDD anode and enhanced the direct electron transfer (DET) reaction, which otherwise inhibited the oxygen evolution side reaction. Therefore, higher current efficiency was achieved in electrochemical activation of persulfates process compared with electrolysis process. Additionally, the transformation products of CBZ were also investigated and their formation pathways were proposed.

Publisher URL: www.sciencedirect.com/science

DOI: S0043135417308473

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.