5 years ago

A new model based on adiabatic flame temperature for evaluation of the upper flammable limit of alkane-air-CO2 mixtures

For security issue of alkane used in Organic Rankine Cycle, a new model to evaluate the upper flammability limits for mixtures of alkanes, carbon dioxide and air has been proposed in present study. The linear relationship was found at upper flammability limits between molar fraction of diluent in alkane-CO2 mixture and calculated adiabatic flame temperature. The prediction ability of the variable calculated adiabatic flame temperature model that incorporated the linear relationship above is greatly better than the models that adopted the fixed calculated adiabatic flame temperature at upper flammability limit. The average relative differences between results predicted by the new model and observed values are less than 3.51% for upper flammability limit evaluation. In order to enhance persuasion of the new model, the observed values of n-butane-CO2 and isopentane-CO2 mixtures measured in this study were used to confirm the validity of the new model. The predicted results indicated that the new model possesses the capacity of practical application and can adequately provide safe non-flammable ranges for alkanes diluted with carbon dioxide.

Publisher URL: www.sciencedirect.com/science

DOI: S0304389417307860

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.