5 years ago

Effective charges of ionic liquid determined self-consistently through combination of molecular dynamics simulation and density-functional theory

Effective charges of ionic liquid determined self-consistently through combination of molecular dynamics simulation and density-functional theory
Nobuyuki Matubayasi, Ryosuke Ishizuka
A self-consistent scheme combining the molecular dynamics (MD) simulation and density functional theory (DFT) was recently proposed to incorporate the effects of the charge transfer and polarization of ions into non-poralizable force fields of ionic liquids for improved description of energetics and dynamics. The purpose of the present work is to analyze the detailed setups of the MD/DFT scheme by focusing on how the basis set, exchange-correlation (XC) functional, charge-fitting method or force field for the intramolecular and Lennard-Jones interactions affects the MD/DFT results of 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl) imide ( [C1mim][NTf2]) and 1-ethyl-3-methylimidazolium glycinate ( [C2mim][Gly]). It was found that the double-zeta valence polarized or larger size of basis set is required for the convergence of the effective charge of the ion. The choice of the XC functional was further not influential as far as the generalized gradient approximation is used. The charge-fitting method and force field govern the accuracy of the MD/DFT scheme, on the other hand. We examined the charge-fitting methods of Blöchl, the iterative Hirshfeld (Hirshfeld-I), and REPEAT in combination with Lopes et al.'s force field and general AMBER force field. There is no single combination of charge fitting and force field that provides good agreements with the experiments, while the MD/DFT scheme reduces the effective charges of the ions and leads to better description of energetics and dynamics compared to the original force field with unit charges. © 2017 Wiley Periodicals, Inc. The basis set and exchange-correlation (XC) functional dependencies are shown for the effective charges of 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl) imide ( [C1mim][NTf2]) determined from the self-consistent scheme combining the molecular dynamics (MD) and density functional theory (DFT) calculations.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jcc.24880

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.