3 years ago

OO bond homolysis in hydrogen peroxide

OO bond homolysis in hydrogen peroxide
Hendrik Zipse, Lakshmanan Sandhiya
OO bond homolysis in hydrogen peroxide (H2O2) has been studied using theoretical methods of four conceptually different types: hybrid DFT (B3LYP, M06-2X), double-hybrid DFT (B2-PLYP), coupled-cluster (CCSD(T)), and multiconfigurational (CASPT2). In addition, the effects of basis set size have also been analyzed. For all of these methods, the OO bond homolysis in hydrogen peroxide has been found to proceed through hydrogen bonded radical pair complexes. Reaction barriers for collapse of the radical pairs to hydrogen peroxide are minute, leading to an overall very flat potential energy surface. However, hydrogen bonding energies in the radical pair complex expressed as the energy difference to two separate hydroxyl radicals are sizeable and exceed 10 kJ/mol for all theoretical methods considered in this study. © 2017 Wiley Periodicals, Inc. Homolytic OO bond dissociation in hydrogen peroxide proceeds through a hydrogen bonded radical pair minimum.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jcc.24870

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.