5 years ago

Oxidative removal of metronidazole from aqueous solution by thermally activated persulfate process: kinetics and mechanisms

Rui Zhou, Yu Su, Lijian Zhang, Taigang Ma, Tingting Li, Hejun Ren

Abstract

Metronidazole (MNZ) is widely used in clinical applications and animal feed as an antibiotic agent and additive, respectively. Widespread occurrence of MNZ in wastewater treatment and hospital effluents has been reported. In this study, the mechanism of MNZ degradation in aqueous solutions via thermally activated persulfate (TAP) process was established under different conditions. The kinetic model was derived for MNZ degradation and followed pseudo-first-order reaction kinetics and was consistent with the model fitted by experimental data (R 2 > 98.8%). The rate constant increased with the initial dosage of persulfate, as well as the temperature, and the yielding apparent activation energy was 23.9 kcal mol−1. The pH of the solutions did not have significant effect on MNZ degradation. The degradation efficiency of MNZ reached 96.6% within 180 min for an initial MNZ concentration of 100 mg L−1 under the optional condition of [PS]0 = 20 mM, T = 60 °C, and unadjusted pH. \( {SO}_4^{\cdotp -} \) and HO · were confirmed using electron paramagnetic resonance (EPR) spectra during TAP process. Radical quenching study revealed that \( {SO}_4^{\cdotp -} \) was mainly responsible for MNZ degradation at an unadjusted pH. MNZ mineralization evaluation showed that the removal efficiency of total organic carbon (TOC) reached more than 97.2%.

Publisher URL: https://link.springer.com/article/10.1007/s11356-017-0518-9

DOI: 10.1007/s11356-017-0518-9

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.