5 years ago

Insights into doxycycline adsorption onto graphene nanosheet: a combined quantum mechanics, thermodynamics, and kinetic study

Hassan Behnejad, Rahele Rostamian

Abstract

Recently, pharmaceutically active compounds including antibiotics have been detected in drinking water at very low levels, mostly nanogram/liter concentrations, proposing that these materials were unaffected by water treatment processes. Adsorption processes were suggested to play a significant role in the removal of antibiotics. In this study, the adsorption behavior of doxycycline (DC) in aqueous solution was evaluated. The four factors influencing the adsorption of DC onto graphene nanosheet (GNS) were studied. The results showed that initial pH ∼ 6 to 7 and contact time ∼ 200 min are optimum. The monolayer adsorption capacity was reduced with the increasing temperature from 25 to 45 °C. Nonlinear regressions were carried out to define the best fit model for every system. Among various models, the Hill isotherm model represented the equilibrium adsorption data of antibiotics while the kinetic data were well fitted by the Elovich kinetic model. The maximum adsorption capacity (q max) was 110 mg.g−1, obtained from the Hill equation. Semiempirical molecular orbital theory was used to investigate the molecular interaction of the adsorption system. The experiments and semiempirical computation have systematically demonstrated that DC could be adsorbed onto GNS by π- π and electrostatic interactions. It was shown that there is a good compromise with the experimental results.

Graphical abstract

Insights into doxycycline adsorption onto graphene nanosheet: quantum mechanics, thermodynamics, and kinetic study.

Publisher URL: https://link.springer.com/article/10.1007/s11356-017-0687-6

DOI: 10.1007/s11356-017-0687-6

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.