4 years ago

Preparation and characterization of isolated low degree of polymerization food-grade maltooligosaccharides

Research involving human responses to the consumption of starch and its hydrolysis products would benefit from convenient sources of well defined, low cost, food-grade maltooligosaccharides (MOS). This report addresses such need by presenting an approach to obtain aforementioned MOS. A chromatography-ready MOS sample containing proportionately high amounts of low degree of polymerization (DP) MOS is initially prepared from commercially-available maltodextrins (MD) by taking advantage of the DP-dependent differential solubility of MOS in aqueous-ethanol solutions. The low DP-enriched MOS preparation is subsequently fractionated via preparative column chromatography using cellulose-based stationary phases and step-gradient aqueous-ethanol mobile phases. The resulting fractions yielded isolated food-grade MOS ranging in DP from 3 to 7. NMR spectra of isolated MOS indicated minimal amounts of branched saccharides. Typical yields from a single fractionation protocol (2 g MD starting material), including solvent partitioning through preparative chromatography, ranged from ∼40 mg for DP 4, 5, and 7 to ∼100 mg for DP 3 and 6.

Publisher URL: www.sciencedirect.com/science

DOI: S0308814617316710

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.