5 years ago

Interdependence of ICD rates in paired quantum dots on geometry

Interdependence of ICD rates in paired quantum dots on geometry
Fabian Weber, Annika Bande, Emad F. Aziz
Using state-of-the-art antisymmetrized multiconfiguration time-dependent Hartree (MCTDH) electron dynamics calculations we study the interdependence of the intermolecular Coulombic decay (ICD) process on the geometric parameters of a doubly-charged paired quantum dot (PQD) model system in the framework of the effective mass approximation (EMA). We find that ICD displays a maximum rate for a certain geometry of the electron-emitting quantum dot, which is simultaneously dependent on both the distance between the quantum dots as well as the photon-absorbing quantum dot's geometry. The rate maximum is shown to be caused by the competing effects of polarization of electron density and Coulomb repulsion. The ICD rate-maximized PQD geometry in GaAs QDs yields a decay time of 102.39 ps. It is given by two vertically-aligned cylindrical QDs with radii of 14.42 nm separated by 86.62 nm. The photon absorbing QD then has a height of 46.59 nm and the electron emitting QD a height of 16.33 nm. © 2017 Wiley Periodicals, Inc. Using electron dynamics calculations, the intermolecular Coulombic decay (ICD) rate in a paired quantum dot (PQD) model system is optimized by a multidimensional scan of geometric parameters. An ICD rate-limiting maximum is found that is non-trivially interdependent on all geometric parameters. The reason for the occurence of the maxima is identified as the competing effects between Coulomb repulsion and electronic polarization, which expands the understanding of the ICD process in QDs.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jcc.24843

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.