5 years ago

Genome-wide association study for ketosis in US Jerseys using producer-recorded data

Ketosis is one of the most frequently reported metabolic health events in dairy herds. Several genetic analyses of ketosis in dairy cattle have been conducted; however, few have focused specifically on Jersey cattle. The objectives of this research included estimating variance components for susceptibility to ketosis and identification of genomic regions associated with ketosis in Jersey cattle. Voluntary producer-recorded health event data related to ketosis were available from Dairy Records Management Systems (Raleigh, NC). Standardization was implemented to account for the various acronyms used by producers to designate an incidence of ketosis. Events were restricted to the first reported incidence within 60 d after calving in first through fifth parities. After editing, there were a total of 42,233 records from 23,865 cows. A total of 1,750 genotyped animals were used for genomic analyses using 60,671 markers. Because of the binary nature of the trait, a threshold animal model was fitted using THRGIBBS1F90 (version 2.110) using only pedigree information, and genomic information was incorporated using a single-step genomic BLUP approach. Individual single nucleotide polymorphism (SNP) effects and the proportion of variance explained by 10-SNP windows were calculated using postGSf90 (version 1.38). Heritability of susceptibility to ketosis was 0.083 [standard deviation (SD) = 0.021] and 0.078 (SD = 0.018) in pedigree-based and genomic analyses, respectively. The marker with the largest associated effect was located on chromosome 10 at 66.3 Mbp. The 10-SNP window explaining the largest proportion of variance (0.70%) was located on chromosome 6 beginning at 56.1 Mbp. Gene Ontology (GO) and Medical Subject Heading (MeSH) enrichment analyses identified several overrepresented processes and terms related to immune function. Our results indicate that there is a genetic component related to ketosis susceptibility in Jersey cattle and, as such, genetic selection for improved resistance to ketosis is feasible.

Publisher URL: www.sciencedirect.com/science

DOI: S0022030217310056

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.