4 years ago

Genome-wide association studies to identify quantitative trait loci affecting milk production traits in water buffalo

Water buffalo is the second largest resource of milk supply around the world, and it is well known for its distinctive milk quality in terms of fat, protein, lactose, vitamin, and mineral contents. Understanding the genetic architecture of milk production traits is important for future improvement by the buffalo breeding industry. The advance of genome-wide association studies (GWAS) provides an opportunity to identify potential genetic variants affecting important economical traits. In the present study, GWAS was performed for 489 buffaloes with 1,424 lactation records using the 90K Affymetrix Buffalo SNP Array (Affymetrix/Thermo Fisher Scientific, Santa Clara, CA). Collectively, 4 candidate single nucleotide polymorphisms (SNP) in 2 genomic regions were found to associate with buffalo milk production traits. One region affecting milk fat and protein percentage was located on the equivalent of Bos taurus autosome (BTA)3, spanning 43.3 to 43.8 Mb, which harbored the most likely candidate genes MFSD14A, SLC35A3, and PALMD. The other region on the equivalent of BTA14 at 66.5 to 67.0 Mb contained candidate genes RGS22 and VPS13B and influenced buffalo total milk yield, fat yield, and protein yield. Interestingly, both of the regions were reported to have quantitative trait loci affecting milk performance in dairy cattle. Furthermore, we suggest that buffaloes with the C allele at AX-85148558 and AX-85073877 loci and the G allele at AX-85106096 locus can be selected to improve milk fat yield in this buffalo-breeding program. Meanwhile, the G allele at AX-85063131 locus can be used as the favorable allele for improving milk protein percentage. Genomic prediction showed that the reliability of genomic estimated breeding values (GEBV) of 6 milk production traits ranged from 0.06 to 0.22, and the correlation between estimated breeding values and GEBV ranged from 0.23 to 0.35. These findings provide useful information to understand the genetic basis of buffalo milk properties and may play a role in accelerating buffalo breeding programs using genomic approaches.

Publisher URL: www.sciencedirect.com/science

DOI: S0022030217310020

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.