5 years ago

Nonlocal strain gradient beam model for postbuckling and associated vibrational response of lipid supramolecular protein micro/nano-tubules

As a supramolecular construction, lipid protein micro/nano-tubules can be utilized in a variety of sustained biological delivery system. The high slenderness ratio of lipid tubules makes their hierarchical assembly into a desired architecture difficult. Therefore, an accurate prediction of mechanical behavior of lipid tubular is essential. The objective of this study is to capture size dependency in the postbuckling and vibrational response of the postbuckled lipid micro/nano-tubules more comprehensively. To this purpose, the nonlocal strain gradient elasticity theory is incorporated to the third-order shear deformation beam theory to develop an unconventional beam model. Hamilton's principle is put to use to establish the size-dependent governing differential equations of motion. After that, an improved perturbation technique in conjunction with Galerkin method is employed to obtain the nonlocal strain gradient load-frequency response and postbuckling stability curves of lipid micro/nano-tubules. It is revealed that by taking the nonlocal size effect into consideration, the influence of the type (geometrical parameters) of an axially compressed lipid micro/nano-tubule on its natural frequency in order decreases and increases within the prebuckling and postbuckling regimes. While the strain gradient size dependency plays an opposite role which causes that the influence of the type of lipid micro/nano-tubule on its natural frequency corresponding to the prebuckling and postbuckling domains increases and decreases, respectively.

Publisher URL: www.sciencedirect.com/science

DOI: S0025556417304376

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.