4 years ago

Experimental validation of DNA interactions with nanoparticles derived from metal coupled amphiphiles

Experimental validation of DNA interactions with nanoparticles derived from metal coupled amphiphiles
Rekha Bhar, S.K. Mehta, Gurpreet Kaur

In the present report, a facile strategy for the synthesis of copper nanoparticles utilizing copper@cetylpyridinium chloride as the metal precursor in combination with vitamin C, was been developed. Synthesized nanoparticles (NPs) were well characterized through UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, energy dispersive X-ray (EDX) spectroscopy, and powder X-ray diffraction (XRD). The as-obtained NPs were used for binding with deoxyribonucleic acid from calf thymus (CT-DNA). Binding potential of synthesized NPs towards DNA was checked by calculating apparent binding constant and various thermodynamic parameters, like ΔG, ΔH, ΔS and number of binding sites from UV-Vis, circular dichroism, and fluorescence spectroscopy. NPs lead to the change in conformation and mobility of the genomic DNA as notify by the circular dichroism and DNA gel electrophoresis. Synergistic effect of synthesized nanoparticles on DNA was also visualized by the tapping mode atomic force microscopy. Research findings of the present work are expected to have an impact on genomic activities.

Publisher URL: http://www.tandfonline.com/doi/full/10.1080/07391102.2017.1398682

DOI: 10.1080/07391102.2017.1398682

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.