5 years ago

RARβ2-dependent signaling represses neuronal differentiation in mouse ES cells

Embryonic Stem (ES) cells are pluripotent cells that can be induced to differentiate into cells of all three lineages: mesoderm, endoderm, and ectoderm. In culture, ES cells can be differentiated into mature neurons by treatment with Retinoic Acid (RA) and this effect is mediated mainly through the activation of the RA nuclear receptors (RAR α, β, and γ), and their isoforms. However, little is known about the role played by specific RAR types on ES cell differentiation. Here, we found that treatment of ES cells with AC55649, an RARβ2 agonist, increased endodermal marker gene expression. On the other hand, we found that the inhibition of RARβ with 5 μM LE135, together with RA treatment, increased the efficiency of mouse ES cell differentiation into neurons by more than 4-fold as compared to cells treated with RA only. Finally, we performed proteomic analyses on ES cells treated with RA vs RA plus AC55649 in order to identify the signaling pathways activated by the RARβ agonist. Our proteomic analyses using antibody microarrays indicated that proteins such as p38 and AKT were upregulated in cells treated with RA plus the agonist, as compared to cells treated with RA alone. Our results indicate that RARβ may function as a repressor of neuronal differentiation through the activation of major cell signaling pathways, and that the pharmacological inhibition of this nuclear receptor may constitute a novel method to increase the efficiency of ES to neuronal differentiation in culture.

Publisher URL: www.sciencedirect.com/science

DOI: S0301468117300889

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.